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Abstract. The integration of system compensation
such as Series Compensator (SC) into the transmis-
sion line makes the coordination of directional overcur-
rent in a practical power system important and com-
plex. This article presents an efficient variant of Par-
ticle Swarm Optimization (PSO) algorithm based on
Time-Varying Acceleration Coefficients (PSO-TVAC)
for optimal coordination of directional overcurrent re-
lays (DOCRs) considering the integration of series
compensation. Simulation results are compared to
other methods to confirm the efficiency of the proposed
variant PSO in solving the optimal coordination of di-
rectional overcurrent relay in the presence of series
compensation.
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1. Introduction

Overcurrent protection could be used as the primary
protection in distribution or sub-transmission net-
works. Directional overcurrent relays (OCRS) have
been commonly used as an economic alternative for the
protection of sub-transmission and distribution system
or as a secondary protection of the transmission system
[1]. Directional OCR coordination in power distribu-
tion network is a major concern of protection engineer
to assure service continuity.

Many attempts and strategies based on conventional
and computerized methods have been made in the past

to coordinate overcurrent relays. A simplex method is
proposed to solve the optimum coordination of overcur-
rent relay timing. A linear programming is proposed
in [2],[3],[4]. In [5], the optimum coordination has been
obtained considering the configuration changes of the
network into account. Authors in [6] present a review
of the major contributions in this area.

The difficulties associated with using the mathemat-
ical optimization of complex engineering problems have
contributed to the development of alternative solu-
tions. In the literature, many standard optimization
methods and hybrid variants based on metaheuristic al-
gorithms have been proposed and applied with success
for solving many complex problems related to power
system protection coordination [7]. Authors in [8] pro-
posed a Hybrid GA-NLP Approach for solving the op-
timal coordination of direction overcurrent. A seeker
optimization method is adapted and applied to solv-
ing the optimal coordination of directional overcurrent
relays DOCRs [9].

The problem of relays coordination becomes more
complex with the presence of series compensation. Se-
ries capacitor (SC) is commonly installed on long trans-
mission lines to increase loadability of the line, enhance
system stability and reduce line losses [10]. The pres-
ence of SC in transmission lines affects the voltage
and current signals at the relaying point and it can
disturb selectivity the coordination between different
relays, this affects greatly the service continuity and
power quality delivered to consumers. Therefore it is
necessary to carefully carry out a study to determine
new setting of DOCRs and distance relays [1]. Many
papers have been proposed to solve the optimal coordi-
nation of directional relay considering the series com-
pensation. In the literature many variants based on
PSO have been proposed to enhance the performance
of the standard PSO algorithm to solve the power sys-
tem protection coordination. Authors in [10] proposed
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an optimal coordination of distance and overcurrent re-
lays in series compensated systems based on MAPSO,
a standard PSO and modified particle swarm optimiza-
tion for optimal coordination of overcurrent relays are
proposed in [11], [12], [13], [14], [15], [16], [17], [18].

Particle swarm optimization (PSO) is one of the best
global optimization methods firstly proposed in [19].
Its development was based on observations of the social
behavior of animals such as bird flocking, fish schooling
and swarm theory. Compared with GA, PSO has some
attractive characteristics. It has a memory, so knowl-
edge of good solutions is stored by all particles; whereas
in GA, previous knowledge of the problem is destroyed
once the population changes. It has constructive coop-
eration between particles, particles in the swarm share
information among themselves [20], [21], [22].

In this paper an adaptive variant of PSO named
PSO-TVAC is proposed and adapted to solve the op-
timal coordination of directional overcurrent relays
(DOCRs) considering the impact of series compensa-
tion (SC). The main objective of this study is the min-
imization of the total time of primary relays by deter-
mining the optimum values of time dial setting (TDS)
(continuous parameter) and pickup tap setting (PTS)
(discrete parameter).

2. Problem Formulation

In the relay coordination problem of DOCRs, the main
objective is to minimize the total time of operation
of primary relays, through two types of tap settings,
namely the time dial setting TDS and pickup tap set-
ting PTS. The objective function can be defined as
follows [9]:

min(J) =

n∑
i=1

wiTik, (1)

where n the number of is relays and wi depends upon
the probability of a given fault occurring in each pro-
tection zone and is usually set to one and Tik is the
operating time of the ith relay

2.1. Relay Characteristics

The operating time of the operating time of the over-
current (please correct the statement before) relay is a
non-linear function consisting of pickup current setting
(Ip) and time dial setting (TDS). Various formula-
tions have been applied for overcurrent relays charac-
teristics simulation. In this work we will use approx-
imate mathematical formula for a relay characteristic

suggested in [3], [4], [5] and given by:

Tik = TDSi

(
0.14

( Ii
Ipi

)0.02 − 1

)
, (2)

where TDSi and Ipi are time dial setting and primary
pickup current setting of the ith relay respectively and
Ii is the fault current passing through ith relay. The
concept of relay pickup tap setting (PTS) could be
formulated by [9]:

PTSi =
Ipi
RCi

, (3)

where RCi is the the transformer turns ratio.

2.2. Standard I.D.M.T. Overcurrent
Relays

The current/time tripping characteristics of IDMT
relays may need to be varied according to the trip-
ping time required and the characteristics of other
protection devices used in the network. For these
purposes, IEC 60255 defines a number of standard
characteristics as follows [23]:

• Standard Inverse (SI).

• Very Inverse (VI).

• Extremely Inverse (EI).

• Definite Time (DT).

The tripping characteristics for different TMS set-
tings using the SI curve ar illustrated in Fig. 1.

2.3. Constraint

The coordination problem has two types of constraints.
Firstly, it is the constraint of the relay characteristic
and secondly it is coordination constraint. Relay
constraints include limits of relay operating time and
settings. Coordination constraints are related to the
coordination of primary and backup relays .

2.4. Constraint of Operating Time
and Bounds on the Relay
Settings

1) The Bounds on Operating Time

The limits are expressed by:

Tmin
ik ≤ Tik ≤ Tmax

ik , i = 1, ...,m, (4)
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Fig. 1: Typical time/current characteristics of standard IDMT
relay.

where Tmin
ik and Tmax

ik are the minimum and maximum
operating times of the ith relay at the kth location.

2) The Constraint of Time and Current
Settings

The limits on TDS and PTS are expressed by:

TDSmin
ik ≤ TDSik ≤ TDSmax

ik , i = 1, ...,m, (5)

PTSmin
ik ≤ PTSik ≤ PTSmax

ik , i = 1, ...,m, (6)
where TDSmin

i , PTSmin
i are the minimum value of

TDS and PTS of the relay ith location. TDSmax
i ,

PTSmax
i are the maximum value of TDS and PTS of

the relay ith location.

2.5. Coordination Criteria

The coordination of directional overcurrent relays in-
volves a choice of relay settings such that for every fault
in the system, there is a specified minimum coordina-
tion interval or time delay between the operation of the
primary relay and that of the backup relay, this inter-
val ensures that the backup relay operates only when
the primary relay fails to perform its assigned task [2].
The value time coordination interval (CTI) is usually
selected between 0.2 and 0.5 s. In this work the CTI
is taken as 0.2.

Tjk ≥ Tik + CTI, CTI = 0.2, (7)

where Tjk operating time of the primary relay Rj , for
fault at k, Tik operating time of the backup relay Ri,
for the same fault at k and the violation in the coordi-
nation criteria can be defined as follows:

V iol_CC = TOP−Ba − (TOP−Pr + CTI), (8)

where V iol_CC violation in the coordination criteria,
TOP−Ba, TOP−Pr are the operating time of the primary
relay and backup relay respectively.

3. Series Compensated
Systems

As it is well known, the operating time of DCORs de-
pends on fault current through it. It is evident that
due to the presence of SC in the line, the short circuit
current passing through the main and backup relays for
near-end fault will be changed. To take the series com-
pensation in consideration, the short circuit analysis is
performed. Figure 2 shows the single line of a simpli-
fied compensated system, in which the SC is considered
in the middle of a line 1-6. The new total impedance of
the transmission line becomes ZL−jXSC , in this study
the degree of compensation taken is 65 %(C = 65 %).

Fig. 2: The single line of a simplified series compensated sys-
tem.

4. Optimization Algorithm
(PSO-TVAC)

Particle Swarm Optimization, is a basic modern
heuristic search method inspired by the behavior of
social systems, firstly introduced by Kennedy and
Eberhart 1995 [19], [20], [21]. The PSO algorithm
begins by creating a random population of particles
with random positions marked by X(t) vectors and
random velocities V (t). The modified velocity and
position of each particle can be calculated using
the current velocity and the distance from Pbestm,
Gbestm shown in the following formulas equations:

V (t+ 1) = w · V (t) + C1rand1 · (Pbestm−
X(t)) + C2rand2 · (Gbestm −X(t))

X(t+ 1) = X(t) + (t+ 1),
(9)

where V (t + 1), V (t) is the current and modified ve-
locity respectively, rand1 and rand2 are the random
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numbers between 0 and 1, Pbestm, is the best value
found by particle m, and Gbestm is the best found in
the group, X(t) is the current position X(t+ 1) is the
modified position, C1; C2 are cognitive and social co-
efficients. The concept of time varying inertial weight
was introduced in [21] is suggested to decrease linearly
from 0.9 to 0.4 during the run .the inertial weights
formulated as in Eq. (10) where iter is the current it-
eration number while termax is the maximum number
of iterations.

w = (wmax −wmin) ·
(itermax − itermin)

itermax
+wmin. (10)

In this work a new variant named particle swarm
optimization based Time Varying Acceleration Coeffi-
cients (PSO−TV AC) [12] is proposed to improve the
perfermances of the standard PSO algorithm. The idea
behind PSO − TV AC is to enhance the global search
in the early part of the optimization and to encourage
the particles to converge towards the global optima at
the end of the search [22]. This is achieved by chang-
ing the acceleration coefficients C1 and C2 with time in
such a manner that the cognitive component is reduced
while the social component is increased as the search
proceeds. The acceleration coefficients are expressed
as:


c1 = (c1f − c1m)

iter

itermax
+ c1m

c2 = (c2f − c2m)
iter

itermax
+ c2m

, (11)

where C1f , C1m, C2f and C2m are social acceleration
factors, initial and final values of cognitive respectively.
The value of this coefficients taken from Ref [24],[25]
reports 2.5 for C1m and C2f and 0.5 each for C2m and
C1f as the most effective values. the population size
and max- generations are taken 200, 500 respectively.

5. Simulation Results

The proposed algorithm is applied to 8-bus network
shown in Fig. 3 to solve the coordination problem. In
this paper the coordination time interval CTI is taken
as 0.2 s, and the TDS values can change continuously
from 0.1 to 1.1 while pickup tap setting PTS values
can change continuously from 0.5 to 2.5 are considered
[10].The ratio current transformer of relays (1, 2, 4, 5,
6, 8, 10, 11, 12, 13) and (3, 7, 9, 14) are assumed as
(1200/5) and (800/5) respectively. The short-circuit
current for near-end 3-ph short circuit faults is given
in Tab. 1 and Tab. 2 .

Fig. 3: Single line diagram of 8-bus system.

5.1. Case Studies

In this study three cases are considered to demonstrate
and improve solution of optimal relay coordination con-
sidering series compensation:

• Case 1: The PSO-TVAC algorithm is applied for
optimal relay coordination problem without con-
sidering series capacitor (SC).

• Case 2: In this case, the best solution found in
the first case (without series compensation) is con-
sidered to show its effect on the presence of series
compensation on the relay coordination.

• Case 3: In this case, the PSO-TVAC algorithm
is applied for optimal coordination of DOCR con-
sidering series compensation (SC).

Table 1 shows the optimal setting of control variables
found using PSO-TVAC. The best operation time is
5.8646 s without considering SC which is better than
the result found in [10], it is important to note that
all constraints are satisfied and within their admissible
limits and the value coordination time interval (CTI)
is also within the specified value (0.2 s). In order to
show the impact of the series compensation on relay co-
ordination, the optimal variable controls found in the
first case are considered in the presence of SC. The
main task of this test is to demonstrate the impact of
SC installed at a specified branch on the efficiency of
the power system protection (relay coordination). As
we can see from Tab. 2, the fault current at different
branches associated to primary and backup relays are
changed. Results depicted in Tab. 3 shows clearly the
constraints violation on the value time coordination in-
terval (CTI), which affect the relay coordination, this
proves the necessity to find new optimal vector control
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Tab. 1: Optimal relay settings in 8-Bus system without compensation.

Scenario A without compensation
Primary/Backup pairs Fault Current (KA) Optimal Relay setting without compensation
(No) Pr-Re Ba-Re Pr-Re Ba-Re No-Re MAPSO [10] PSO-TVAC Case 1
1 1 6 3.260 3.260 TDS Ip(A) TDS Ip(A)
2 2 1 6.113 1.001 1 0.101 368.76 0.1000 378.984
3 2 7 6.113 1.900 2 0.118 995.86 0.1744 600.000
4 3 2 3.060 3.060 3 0.102 805.74 0.1593 400.000
5 4 3 3.833 2.324 4 0.100 865.94 0.1141 600.000
6 5 4 2.410 2.410 5 0.193 153.15 0.1000 369.456
7 6 5 6.215 1.060 6 0.100 856.06 0.1275 600.000
8 6 14 6.215 1.780 7 0.260 122.99 0.1614 400.000
9 7 5 5.228 1.112 8 0.100 811.08 0.1242 600.000
10 7 13 5.228 0.834 9 0.165 180.96 0.1000 400.000
11 8 7 6.134 1.890 10 0.100 726.34 0.1106 600.000
12 8 9 6.134 1.126 11 0.100 780.72 0.1226 600.000
13 9 10 2.060 2.060 12 0.127 964.58 0.1770 600.000
14 10 11 3.949 2.439 13 0.100 367.83 0.1000 377.472
15 11 12 3.893 3.893 14 0.197 238.03 0.1560 400.000
16 12 13 6.140 0.988
17 12 14 6.140 1.780 Best solution found (OF)

∑
(Tik)

18 13 8 3.017 3.017
19 14 1 5.172 0.857 MAPSO [10] 5.9118
20 14 9 5.172 1.087 PSO-TVAC Case 1 5.8646

Tab. 2: Optimal relay settings in 8-Bus system without compensation.

Scenario A with compensation
Primary/Backup pairs Fault Current (KA) Optimal Relay setting without compensation
(No) Pr-Re Ba-Re Pr-Re Ba-Re (No-Re) Case 2 Case 3
1 1 6 3.382 3.382 TDS Ip(A) TDS Ip(A)
2 2 1 6.600 0.683 1 0.1000 378.984 0.1000 267.12
3 2 7 6.600 2.660 2 0.1744 600.000 0.1889 600.00
4 3 2 3.895 3.895 3 0.1593 400.000 0.1643 400.00
5 4 3 3.912 2.388 4 0.1141 600.000 0.1179 600.00
6 5 4 2.396 2.396 5 0.1000 369.456 0.1000 407.16
7 6 5 6.897 1.032 6 0.1275 600.000 0.1178 600.00
8 6 14 6.897 2.546 7 0.1614 400.000 0.2037 400.00
9 7 5 5.000 1.025 8 0.1242 600.000 0.1133 600.00
10 7 13 5.000 0.623 9 0.1000 400.000 0.1000 400.00
11 12 13 6.845 2.587 10 0.1106 600.000 0.1188 600.00
12 12 14 6.845 1.000 11 0.1226 600.000 0.1302 600.00
13 13 8 2.492 2.492 12 0.1770 600.000 0.1860 600.00
14 14 1 4.033 2.509 13 0.1000 377.472 0.1000 259.176
15 14 9 4.074 4.074 14 0.1560 400.000 0.1995 400.00
16 12 13 6.602 0.670
17 12 14 6.602 2.613 Best solution found (OF)

∑
(Tik)

18 13 8 3.098 3.098
19 14 1 4.929 0.638 Case 2 (PSO − TV AC) 5.6833
20 14 9 4.929 0.996 Case 3 (PSO − TV AC) 5.9369
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Fig. 4: Convergence characteristic for PSO-TVAC.

Tab. 3: The violation of the associated constraints for three cases.

Case 1 Case 2 Case 3
Pr-Re Ba-Re TOP−Pr TOP−Ba Viol_CC TOP−Pr TOP−Ba Viol_CC TOP−Pr TOP−Ba Viol_CC

1 1 0.3183 0.5184 0.2001 0.3129 0.5072 0.1944 0.2688 0.4686 0.1998
2 2 0.5138 0.7137 0.1999 0.4970 1.1815 0.6845 0.5383 0.7387 0.2003
2 3 0.5138 0.7139 0.2000 0.4970 0.5851 0.0881 0.5383 0.7384 0.2001
3 4 0.5370 0.7372 0.2002 0.4789 0.6405 0.1616 0.4939 0.6938 0.1999
4 5 0.4228 0.6226 0.1999 0.4181 0.6130 0.1949 0.4320 0.6323 0.2003
5 6 0.3663 0.5665 0.2002 0.3675 0.5689 0.2014 0.3880 0.5878 0.1998
6 7 0.3729 0.6572 0.2843 0.3566 0.6745 0.3178 0.3295 0.7457 0.4162
6 8 0.3729 0.7206 0.2477 0.3566 0.5792 0.2225 0.3295 0.7407 0.4111
7 9 0.4284 0.6283 0.1999 0.4361 0.6790 0.2429 0.5504 0.7512 0.2008
7 10 0.4284 0.8760 0.4477 0.4361 1.3901 0.9540 0.5504 0.7912 0.2407
8 11 0.3654 0.7163 0.3510 0.3485 0.5940 0.2455 0.3179 0.7497 0.4317
8 12 0.3654 0.6694 0.3040 0.3485 0.7570 0.4085 0.3179 0.7570 0.4390
9 13 0.4201 0.6199 0.1998 0.3757 0.5360 0.1603 0.3757 0.5757 0.2001
10 14 0.4032 0.6034 0.2002 0.3986 0.5913 0.1927 0.4282 0.6280 0.1998
11 15 0.4504 0.6503 0.1999 0.4395 0.6345 0.1950 0.4668 0.6668 0.2000
12 16 0.5205 0.7205 0.2001 0.5043 1.2130 0.7086 0.5300 0.7300 0.2001
12 17 0.5205 0.7206 0.2001 0.5043 0.5710 0.0666 0.5300 0.7302 0.2002
13 18 0.3298 0.5297 0.1998 0.3256 0.5210 0.1954 0.2752 0.4752 0.2000
14 19 0.4158 0.8509 0.4351 0.4240 1.3370 0.9130 0.5422 0.7970 0.2548
14 20 0.4158 0.6932 0.2774 0.4240 0.7603 0.3363 0.5422 0.7603 0.2181
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Fig. 5: Convergence evolution of control variable TDS associated to relays 1-8 during search process.

Fig. 6: Convergence evolution of control variable TDS associated to relays 9-14 during search process.
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Fig. 7: Convergence evolution of control variable PTS associated to relays 1-8 during search process.

Fig. 8: Convergence evolution of control variable PTS associated to relays 9-14 during search process.
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(TDS, IP ) adapted to the new configuration (with
series compensation). The convergence of the proposed
variantPSO − TV AC for the first case and the third
case is well shown in Fig. 4, the convergence evolution
of the two control variables TDS and PTS during the
search process corresponding to all relays are shown in
Fig. 5, Fig. 6, Fig. 7, Fig. 8.

6. Conclusion

This work proposed an optimal coordination for direc-
tional overcurrent relays considering series compensa-
tion using modified variant of PSO named PSO-TVAC
algorithm. The main objective of this study is first
to demonstrate the effect of series compensation on
the performance of relays coordination to ensure ser-
vice continuity. In the second stage the efficiency of
the proposed PSO-TVAC to solve the relays coordina-
tion problem is demonstrated on a practical test system
(8-Bus) considering the effect of series compensation.
Simulation results compared with other optimization
methods prove the efficiency of the proposed variant in
term of solution quality and convergence.
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