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Abstract. The paper deals with the solution of large
non-symmetric two-by-two block linear systems with a
singular leading submatrix. Our algorithm consists of
two levels. The outer level combines the Schur com-
plement reduction with the orthogonal projectors that
leads to the linear equation on subspaces. To solve this
equation, we use a Krylov-type method representing the
inner level of the algorithm. We propose a general tech-
nique how to get from the standard Krylov methods
their projected variants generating iterations on sub-
spaces. Then we derive the projected GMRES. The ef-
ficiency of our approach is illustrated by examples aris-
ing from the combination of the fictitious domain and
FETI method.
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1. Introduction

We consider two-by-two block linear systems

A
(
u
λ

)
=

(
f
g

)
, (1)

where

A =

(
A B>1
B2 −C

)
∈ R(n+m)×(n+m)

with A ∈ Rn×n singular, C ∈ Rm×m, B1, B2 ∈ Rm×n,
f, u ∈ Rn, g, λ ∈ Rm, and m � n. Systems of this
type arise in a variety of scientific and engineering ap-
plications [2]. For instance, when the FETI (Finite

Element Tearing and Interconnecting) domain decom-
position method [8], [6], [20] is used for the numerical
solution of elliptic PDEs, we get a saddle-point linear
system, i.e., Eq. (1) with A being symmetric, positive
semidefinite, B1 = B2, and C = 0. The FETI algo-
rithm consists of two levels. The outer level combines
the Schur complement reduction requiring a general-
ized inverse to A with the null-space method performed
by orthogonal projectors. It results in the linear equa-
tion with the singular matrix that is, fortunately, the
symmetric and positive definite operator in a subspace
V ⊂ Rm. Therefore, this equation can be solved in
V by the projected CGM representing the inner level
of the FETI algorithm. Note that the projected CGM
was developed also in context of optimization prob-
lems [12].

The extension of the FETI algorithm for solving
Eq. (1) called the PSCM (Projected Schur Comple-
ment Method) was proposed in [16] (for C = 0). Al-
though the outer level is based on the same ideas as in
the FETI algorithm, we arrive at the linear equation
whose matrix is the invertible operator between two
different subspaces V1 and V2 in Rm. Therefore, the
projected iterative method for non-symmetric, indefi-
nite operators is needed in the inner level of the PSCM.
In this paper, we develop a general technique enabling
us to derive from the standard Krylov methods their
projected variants generating iterations on subspaces.
Then we derive the projected GMRES (ProjGMRES).
The projected Krylov methods for solving Eq. (1) with
A being non-symmetric, B1 = B2, and C = 0 have
been developed also in [23] (without the Schur comple-
ment reduction).

Our research is motivated by the development of
the fictitious domain (FD) method for solving elliptic
PDEs. The main idea consists in an extension of the
original PDE problem defined in a domain ω to a larger
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domain Ω ⊃ ω with a simple shape, e.g. a box. The
new problem is chosen in such a way that its solution
restricted to ω coincides with the solution of the origi-
nal problem. Since Ω has a simple shape, one can use
specific partitions based on non-fitted uniform meshes
that does not respect the geometry of ω. Therefore,
the resulting stiffness matrix, represented in Eq. (1) by
A, does not depend on ω. Moreover, one can combine
the FD method with other techniques, e.g. with the
FETI domain decomposition method that enables us
to perform an efficient parallelization of computations.
There are several ways how to define the new problem
in Ω. One of them uses boundary Lagrange multipliers
introduced on the boundary of ∂ω [9], [10], [13], [14].
The linear system Eq. (1) arising from the finite ele-
ment approximation is typically symmetric. Unfortu-
nately, this approach suffers from a serious drawback:
the computed solution has a generally non-zero jump of
its normal derivative across γ. If non-fitted meshes are
used, the singularity appears inside of some elements of
the partition, namely those ones the interior of which
is cut by γ. Consequently, the theoretical rate of con-
vergence of approximate solutions is slow, at most 1/2
[16], [15]. To improve the accuracy in ω, the authors
of [16] proposed the smooth FD method. Instead of
Lagrange multipliers on γ, control variables defined on
a closed curve Γ in Ω having a positive distance from
ω are used. The solution is still singular in Ω but the
singularity is shifted away from ω to Γ and as a re-
sult, convergence in ω becomes faster. The algebraic
formulation leads to the non-symmetric linear system
Eq. (1), in which B1 and B2 play the role of the "trace
matrices" (i.e., approximations of boundary operators)
on Γ and γ, respectively, and C = 0.

Let us introduce some conventions that we use
throughout the whole paper. If M ∈ Rk×l is a ma-
trix, then N (M) and R(M) denote its null-space and
range-space defined by N (M) = {v ∈ Rl : Mv = 0}
and R(M) = {v ∈ Rk : v = Mw, w ∈ Rl}, re-
spectively. M> is the transpose of M . The Moore-
Penrose inverse of M will be denoted by M†. The
symbol ‖ · ‖ stands for the Euclidean norm of vectors,
i.e., ‖v‖ = (v>v)1/2 for v ∈ Rk. The spectral con-
dition number of the symmetric, positive definite ma-
trix N ∈ Rk×k is given by κ(N) = σmax(N)/σmin(N),
where 0 < σmin(N) ≤ σmax(N) are the smallest and
largest eigenvalues of N , respectively. Finally, I and 0
denote the identity and zero matrices of an appropriate
order, respectively.

2. Preliminaries

In this section, we summarize results of [16], [19]. Our
aim is to find (u, λ) ∈ Rn ×Rm satisfying Eq. (1). We
will assume:

(A1) the matrix A in Eq. (1) is nonsingular;
(A2) the block A of A is singular.

It is easy to show that (A1) implies

N (A>) ∩N (B1) = {0}, N (A) ∩N (B2) = {0}. (2)

Further, (A2) yields the existence of RA, RA> ∈ Rn×l
whose columns span N (A), and N (A>), respectively,
where l := l(A) is the nullity of A. By X ∈ Rn×n we
denote an arbitrary generalized inverse of A satisfying
A = AXA. Our algorithm requires that X, RA, and
RA> are to our disposal so that one can efficiently com-
pute actions of these matrices on vectors; see [19] for
computational details.

To describe the outer level of the PSCM, we start
with the Schur complement reduction. The first block
equation in Eq. (1) is satisfied, if f − B>1 λ ∈ R(A) or
equivalently

R>A>(f −B>1 λ) = 0. (3)

The first component of the solution is given by

u = X(f −B>1 λ) +RAα, (4)

where α ∈ Rl is an appropriate vector. Substituting
Eq. (4) into the second block equation in Eq. (1), we
arrive at

(B2XB
>
1 + C)λ−B2RAα = B2Xf − g. (5)

Let us denote F = B2XB
>
1 + C, G1 = −R>AB>2 ,

G2 = −R>A>B
>
1 , d = B2Xf − g, e = −R>A>f , and

S =

(
F G>1
G2 0

)
∈ R(m+l)×(m+l). (6)

The matrix S is the (negative) Schur complement of
the block A in A. Obviously, S is not unique, since it
depends on the choice of X, RA, and RA> . Neverthe-
less, one can prove that each S is non-singular due to
(A1). Summarizing Eq. (3) and Eq. (5), we see that
the pair (λ, α) ∈ Rm × Rl satisfies

S
(
λ
α

)
=

(
d
e

)
. (7)

To solve Eq. (1), one computes (λ, α) from Eq. (7) and
then u by Eq. (4).

Assuming λ to be known, α is given by

α = (G1G
>
1 )−1G1(d− Fλ), (8)

as follows from the first block equation in Eq. (7).
The inverse (G1G

>
1 )−1 in Eq. (8) is well-defined, since

the second relation in Eq. (2) guarantees the full row-
rank of G1 (similarly for G2 due to the first relation in
Eq. (2)). It remains to show how to compute λ.

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 132



MATHEMATICAL ANALYSIS AND NUMERICAL MATHEMATICS VOLUME: 12 | NUMBER: 2 | 2014 | JUNE

We use the null-space method performed by the or-
thogonal projectors Pi onto N (Gi):

Pi = I −G>i (GiG
>
i )−1Gi, i = 1, 2. (9)

Applying P1 to the first block equation in Eq. (7) and
using P1G

>
1 = 0, we arrive at the problem in terms of

λ:
P1Fλ = P1d, G2λ = e. (10)

To get a linear equation in N (G2), we decompose
λ on two orthogonal components λN ∈ N (G2) and
λR ∈ R(G>2 ) so that λ = λN + λR. As I − P2 is the
orthogonal projector onto R(G>2 ), we get

λR = (I − P2)λ = G>2 (G2G
>
2 )−1e.

Hence, λR is easily computable. Assuming that λR is
known, we find that λN satisfies the linear equation

P1FλN = q, (11)

where q = P1(d − FλR). Although the matrix P1F
is singular, the following theorem guarantees the solv-
ability of Eq. (11).

Theorem 1 [19] The linear operator P1F is invertible
between N (G2) and N (G1).

Algorithm PSCM

Input: X, RA, RA> , B1, B2, C, f , g.
Step 1: Assemble Gi, Hi = (GiG

>
i )−1, i = 1, 2, d, e.

Step 2: Assemble λR = G>2 H2e.
Step 3: Assemble q = P1(d− FλR).
Step 4: Compute λN by solving Eq. (11).
Step 5: Assemble λ = λR + λN .
Step 6: Assemble α = H1G1(d− Fλ).
Step 7: Assemble u = X(f −B>1 λ) +RAα.

The matrices F , P1, and P2 need not be assembled
explicitly, if an approprite iterative method in Step 4
is used. We need only actions on µ ∈ Rm evaluated
successively as indicated by the parentheses: Fµ =
B2(X(B>1 µ)) + Cµ, Piµ = µ−Gi(Hi(G

>
i µ)), i = 1, 2.

The following theorem shows that P1F is invariant with
respect to the generalized inverse X.

Theorem 2 [19] Let X be an arbitrary generalized in-
verse of A and let A† be the Moore-Penrose one. Let
us denote µX = P1B2XB

>
1 µ and µA† = P1B2A

†B>1 µ
for µ ∈ N (G2). It holds that µX = µA† .

3. Projected Krylov Methods

In this section, we present a general technique en-
abling us to derive projected Krylov methods for solv-
ing Eq. (11). Since our approach is general, we replace

Eq. (11) by the following abstract problem: find x ∈ V2

such that
Mx = q, (12)

where M ∈ Rm×m represents the invertible operator
M : V2 7→ V1 between subspaces V1,V2 ⊂ Rm with
dimV1 = dimV2 = m − l, 1 ≤ l < m, and q ∈ V1.
These assumptions guarantee that there is the unique
solution to Eq. (12). Note that the matrix M may be
singular (on Rm).

Let Z1, Z2 ∈ Rm×(m−l) be matrices whose columns
span V1, V2, respectively. Let x̄, q̄ ∈ Rm−l be such
that q = Z1(Z>1 Z1)−1q̄, x = Z2x̄. Substituting these
vectors into Eq. (12) and multiplying by Z>1 , we find
that Eq. (12) reduces to the system of linear equations:

Nx̄ = q̄, (13)

where N = Z>1 MZ2 ∈ R(m−l)×(m−l).

Lemma 1 The matrix N in Eq. (13) is non-singular.

Proof. Let Z>1 MZ2y = 0 be the homogeneous system.
Denoting y1 = MZ2y, we obtain Z>1 y1 = 0. As y1 ∈ V1

is orthogonal to all basis vectors of V1, we get y1 = 0.
InMZ2y = 0, we set y2 = Z2y. Then,My2 = 0 implies
y2 = 0 due to the invertibility of M . Finally, Z2y = 0
yields y = 0, as Z2 has full column-rank. Hence, the
solution to the homogeneous system is trivial. �

To propose a projected method for solving Eq. (12),
we start from a (standard) Krylov method applied to
Eq. (13) that generates approximations to the solution
of Eq. (13) in Rm−l. Our aim is to transform these
approximations to get directly approximations of the
solution to Eq. (12). We will also replace Z1 and Z2

by the respective orthogonal projectors so that Z1 and
Z2 are not explicitly needed in computations.

First of all we show how to transform three vec-
tor operations performed by the Krylov methods from
Rm−l to V2, namely, the linear combination and the
scalar product of vectors and the matrix-vector multi-
plication. We will use notation introduced already in
Eq. (12) and Eq. (13): if x̄ ∈ Rm−l is a "short" vector,
then x ∈ V2 denotes the "extended" vector given by
x = Z2x̄. As x̄ is the vector of coordinates of x with
respect to the basis of Z2, there is the one-to-one corre-
spondence between x̄ and x (similarly for ȳ, z̄ ∈ Rm−l
and y, z ∈ V2, respectively).

Let a, b ∈ R. The linear combination is easy to trans-
form, since

z̄ = ax̄+ bȳ ⇐⇒ z = ax+ by. (14)

Without lost of generality, we may assume that Z2 is
orthogonal, i.e.,

Z>2 Z2 = I. (15)
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Using Eq. (15) in the scalar product of x̄ and ȳ, we get

x̄>ȳ = x̄>Z>2 Z2ȳ = x>y. (16)

From Eq. (14) and Eq. (16) we see that linear com-
binations and scalar products are identical for "short"
and "extended" vectors, i.e., the respective formulas
will be the same in the Krylov method as well as in its
projected variant.

Let us discuss the matrix-vector multiplication by N
from Eq. (13). We get:

ȳ = Z>1 MZ2x̄ ⇐⇒ Z2ȳ = Z2Z
>
1 MZ2x̄

⇐⇒ y = Z2Z
>
1 Mx. (17)

To replace Z2Z
>
1 by an orthogonal projector, we con-

sider MP ∈ Rm×m representing another invertible op-
erator MP : V2 7→ V1. Then we introduce Z1 by

Z1 = MPZ2. (18)

It follows immediately from the invertibility ofMP that
the columns of Z1 span V1. Therefore, Z1 is well-
defined by Eq. (18). Inserting Eq. (18) into the last
equality in Eq. (17), we arrive at

y = P2M
>
PMx, (19)

where
P2 = Z2Z

>
2 , (20)

is the orthogonal projector from Rm onto V2 due
to Eq. (15). When solving Eq. (11), one can replace
Eq. (20) by Eq. (9). This avoids the explicite know-
ledge of Z2.

It remains to show how to choose MP in practice.
We propose two variants.

Variant 1: MP = M .

Variant 2: MP = P1,

where P1 is the orthogonal projector from Rm onto V1.
One can compute P1 again by Eq. (9) .

Below we will analyze the matrix N in Eq. (13) for
both variants using the smallest, largest singular values
of M on V2 defined by:

σmin(M |V2) = min
x∈V2, x 6=0

‖Mx‖
‖x‖

,

σmax(M |V2) = max
x∈V2, x 6=0

‖Mx‖
‖x‖

,

respectively. As 0 < σmin(M |V2) ≤ σmax(M |V2), the
condition number of M on V2 is defined by

κ(M |V2) =
σmax(M |V2)

σmin(M |V2)
.

3.1. Variant 1

In this case, N = Z>2 M
>MZ2 is symmetric, positive

definite so that the CGM can be applied to Eq. (13). It
is well-known that its convergence rate is determined
by the spectral condition number κ(N) of N [11].

Theorem 3 Let Z2 be orthogonal. It holds:

κ(N) = κ(M |V2)2.

Proof. Recall that κ(N) = σmax(N)/σmin(N), where
σmin(N), σmax(N) are the smallest, largest eigenvalues
of N , respectively. We get:

σmin(N) = min
x̄∈Rm−l, x̄ 6=0

x̄>Nx̄

x̄>x̄

= min
x̄∈Rm−l, x̄ 6=0

x̄>Z>2 M
>MZ2x̄

x̄>Z>2 Z2x̄

= min
x∈V2, x 6=0

x>M>Mx

x>x

= σmin(M |V2)2.

Analogously, σmax(N) = σmax(M |V2)2. �

As MP = M is invertible, N is non-singular for
any choice of the input data. On the other hand, two
expensive matrix-vector multiplications by M and its
transpose are needed in Eq. (19). Moreover, as κ(N)
is the square of κ(M |V2), it is usually too high so that
the convergence rate of the CGM (and other Krylov
methods) may be slow.

3.2. Variant 2

Now the invertibility of MP = P1 is not guaranteed.
To get this property we need the following theorem.

Theorem 4 Let P1 be the orthogonal projector onto
V1. The restriction P1 : V2 7→ V1 is invertible iff

V2 ∩ V⊥1 = {0}, (21)

where V⊥1 is the orthogonal complement to V1 in Rm.

Proof. First we prove the implication "⇐". Any
x ∈ V2 can be split into two orthogonal components:
x = xV⊥1 + xV1 , where xV⊥1 ∈ V⊥1 and xV1 ∈ V1. If
x 6= 0, then Eq. (21) yields xV1

6= 0 and P1x = xV1
.

Therefore, the only solution of the homogeneous equa-
tion P1x = 0 on V2 is trivial so that the invertibility of
P1 on V2 is proved. To prove the opposite implication
"⇒", we assume that there is x ∈ V2 ∩ V⊥1 , x 6= 0.
Then, x is the non-zero solution of the homogeneous
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equation P1x = 0 on V2. This contradicts to the in-
vertibility of P1 on V2. �

Condition Eq. (21) is equivalent to the fact that the
angle θ between the subspaces V2 and V⊥1 is non-zero.
Recall that θ = arccos γ, where

γ = max
x∈V2, y∈V⊥1
x 6=0, y 6=0

x>y

‖x‖‖y‖
.

Since Eq. (21) yields 0 ≤ γ < 1, the strengthened
Cauchy-Schwarz inequality holds:

x>y ≤ γ‖x‖‖y‖ ∀x ∈ V2 ∀y ∈ V⊥1 .

The angle between the subspaces V2, V⊥1 and between
their orthogonal complements V⊥2 , V1 is the same [17].
Therefore,

x>y ≤ γ‖x‖‖y‖ ∀x ∈ V⊥2 ∀y ∈ V1, (22)

with γ as above. Moreover, the equality in Eq. (22) is
achieved for nonzero x∗ ∈ V⊥2 , y∗ ∈ V1 such that

x∗ = Q2y
∗, (23)

where Q2 = I − P2 is the orthogonal projector from
Rm onto V⊥2 .

Note that N = Z>2 MZ2 in Eq. (13). The following
theorem proves, among others, that this N is close to
a singular matrix when θ is small.

Theorem 5 Let Z2 be orthogonal. Let θ be the angle
between the subspaces V2 and V⊥1 . The smallest, largest
singular values σmin(N), σmax(N) of N on Rm−l, re-
spectively, satisfy:

sin θ · σmin(M |V2) ≤ σmin(N) ≤ sin θ · σmax(M |V2),
(24)

sin θ · σmin(M |V2) ≤ σmax(N) ≤ σmax(M |V2). (25)

Proof. As P2, Q2 are the orthogonal projectors from
Rm onto V2, V⊥2 , respectively, it holds:

‖y‖2 − ‖P2y‖2 = ‖Q2y‖2. (26)

Assuming y ∈ V1 and using Eq. (22), we have

‖Q2y‖2 = y>Q2y ≤ γ‖Q2y‖‖y‖

implying ‖Q2y‖ ≤ γ‖y‖. Together with Eq. (26), we
obtain

‖y‖2 − ‖P2y‖2 ≤ γ2‖y‖2

and, consequently,

‖P2y‖ ≥
√

1− γ2 · ‖y‖ = sin θ · ‖y‖.

Since the bound is achieved for y∗ from Eq. (23), we
get

min
y∈V1, y 6=0

‖P2y‖
‖y‖

=
‖P2y

∗‖
‖y∗‖

= sin θ. (27)

Now

σmin(N) = min
x̄∈Rm−l, x̄ 6=0

‖Nx̄‖
‖x̄‖

= min
x̄∈Rm−l, x̄ 6=0

(x̄>Z>2 M
>Z2Z

>
2 MZ2x̄)1/2

(x̄>Z>2 Z2x̄)1/2

= min
x∈V2, x 6=0

(x>M>P2Mx)1/2

(x>x)1/2

= min
x∈V2, x 6=0

‖P2Mx‖
‖x‖

= min
x∈V2, x 6=0y=Mx

‖P2y‖
‖y‖

· ‖Mx‖
‖x‖

. (28)

Let x in the last expression of Eq. (28) be chosen as
x̂ ∈ V2 satisfying y∗ = Mx̂, where y∗ is from Eq. (27).
Then

σmin(N) ≤ ‖P2y
∗‖

‖y∗‖
· ‖Mx̂‖
‖x̂‖

≤ sin θ · σmax(M |V2),

proves the upper bound in Eq. (24). Further Eq. (28)
yields

σmin(N) ≥ min
y∈V1, y 6=0

‖P2y‖
‖y‖

· min
x∈V2, x 6=0

‖Mx‖
‖x‖

= sin θ · σmin(M |V2),

the lower bound in Eq. (24). To prove Eq. (25), we
start from

σmax(N) = max
x∈V2, x 6=0
y=Mx

‖P2y‖
‖y‖

· ‖Mx‖
‖x‖

.

The upper bound follows immediately from the fact
that ‖P2y‖ ≤ ‖y‖. Using the same x̂ and y∗ as above,
we obtain the lower bound:

σmax(N) ≥ ‖P2y
∗‖

‖y∗‖
· ‖Mx̂‖
‖x̂‖

≥ sin θ · σmin(M |V2).

�

4. Projected GMRES

In this section, we derive the projected GM-
RES method (ProjGMRES) for solving Eq. (11)
(and Eq. (12)). We use the same notation for
"short"/"extended" vectors, respectively, as in Sec-
tion 3. We start from the GMRES method [24], [11]
introduced below for solving Eq. (13).
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The GMRES method is initialized by x̄0 ∈ Rm−l
and stopped, if the terminating tolerance ε > 0 or the
maximal number of iterations kmax ≥ 1 is achieved.
The obtained result x̄k̂ ∈ Rm−l approximates the solu-
tion of Eq. (13). Here and in what it follows, k̂ stands
for the final number of iterations. In step 16◦ of the
scheme below, H = (hi,j) ∈ R(k+1)×k denotes the up-
per Hessenberg matrix and e1 = (1, 0, . . . , 0)> ∈ Rk+1

for k = k̂. The minimizer v ∈ Rk̂ in 16◦ can be
efficiently computed using the Givens rotations and,
then, solving the resulting triangular linear sys-
tem [24, 11]. The columns of Q̄ are the Arnoldi vectors
q̄k ∈ Rm−l so that Q̄ = (q̄1, . . . , q̄k̂) ∈ R(m−l)×k̂

represents the orthogonal basis of the respective
Krylov space. Note that the norm of the residua err
in step 13◦ may be obtained without any explicit
knowledge of x̄k [21]. The computation of err is based
on applying the Givens rotations to the extended
matrix H̃ = (H|βe1) ∈ R(k+1)×(k+1). Eliminating the
subdiagonal we H̃, we get err as the last diagonal
entry in a triangular matrix:

H̃ =


h11 h12 . . . h1,k β
h21 h22 . . . h2,k 0

h32 . . . h3,k 0
. . .

...
...

hk+1,k 0



Givens
rotations
−→


× × . . . × ×
0 × . . . × ×

0 . . . × ×
. . .

... ×
0 err

 . (29)

The GMRES method for solving Eq. (13) is intro-
duced below. Our implementation of the ProjGMRES
for solving Eq. (12) is derived from the GMRES using
the following results of Section 3: (i) the linear com-
bination of vectors in the corresponding steps of the
GMRES and the ProjGMRES are given by the same
formulas; (ii) the scalar products, including the Eu-
clidean norms of vectors, in GMRES and ProjGMRES
give the same values; (iii) the matrix-vector multipli-
cation by N in the GMRES is replaced by P2M

>
PM in

ProjGMRES. Acording to (i)-(iii), one can insert the
most of the GMRES formulas into the ProjGMRES
removing only the bars over vectors. The remaining
formulas are discussed below. The computation of the
residua in step 1◦ of the ProjGMRES is based on the
fact that r0 = Z2r̄

0, q̄ = Z>1 q, and Eq. (18):

r0 = Z2r̄
0 = Z2Z

>
1 q−P2M

>
PMx0 = P2M

>
P (q−Mx0).

The analogous formula is formally used in step 13◦,
however, the efficient computation of err in the Pro-
jGMRES is given again by the principle represented by
Eq. (29). Similarly, the minimization problem in step

16◦ can be realized by the same way as in the GM-
RES. The matrix Q = (q1, . . . , qk̂) ∈ Rm×k̂ consists of
the extended Arnoldi vectors qk ∈ V2. The inputs M ,
q, P2, andMP are introduced in Section 3 and x0 ∈ V2.
The meaning of ε and kmax is the same as in the GM-
RES. Obviously, if x0 = Z2x̄

0, then the GMRES and
the ProjGMRES converge for the same number of ite-
rations and xk̂ = Z2x̄

k̂ (in the exact arithmetic).

GMRES(N ,q̄,x̄0,ε,kmax)7→ x̄k̂

1◦ r̄0 := q̄ −Nx̄0

2◦ β := ‖r̄0‖, err := β

3◦ k := 0, ε := ε× β
4◦ while err > ε & k ≤ kmax
5◦ q̄k+1 := r̄k/‖r̄k‖
6◦ k := k + 1

7◦ r̄k := Nq̄k

8◦ for i := 1, . . . , k

9◦ hik := (q̄i)>r̄k

10◦ r̄k := r̄k − hikq̄i

11◦ end
12◦ hk+1,k := ‖r̄k‖
13◦ err := ‖q̄ −Nx̄k‖
14◦ end

15◦ k̂ := k

16◦ v := arg minw∈Rk̂ ‖Hw − βe1‖
17◦ x̄k̂ := x̄0 + Q̄v

ProjGMRES(M ,q,P2,MP ,x0,ε,kmax)7→ xk̂

1◦ r0 := P2M
>
P (q −Mx0)

2◦ β := ‖r0‖, err := β

3◦ k := 0, ε := ε× β
4◦ while err > ε & k ≤ kmax
5◦ qk+1 := rk/‖rk‖
6◦ k := k + 1

7◦ rk := P2M
>
PMqk

8◦ for i := 1, . . . , k

9◦ hik := (qi)>rk

10◦ rk := rk − hikqi

11◦ end
12◦ hk+1,k := ‖rk‖
13◦ err := ‖P2M

>
P (q −Mxk)‖

14◦ end

15◦ k̂ := k

16◦ v := arg minw∈Rk̂ ‖Hw − βe1‖
17◦ xk̂ := x0 +Qv
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The Arnoldi vectors qk generated in the ProjGMRES
belong to V2. This property may be violated due to
round-off errors so that qk may be deflected from V2.
In order to remove this kind of instability, we propose
to project each rk into V2, i.e., we add rk := P2r

k in
step 12◦.

Let us turn our attention to problem Eq. (11), i.e.,
M = P1F , x = λN , V1 = N (G1), and V2 = N (G2).
The formulas in steps 1◦, 7◦ of the ProjGMRES take
the form

r0 := P2F
>(q − P1Fx

0), rk := P2F
>P1Fq

k (30)

for the Variant 1, or

r0 := P2(q − P1Fx
0), rk := P2P1Fq

k (31)

for the Variant 2, respectively. The orthogonal projec-
tors P1, P2 are given by Eq. (9).

5. Numerical Experiments

To test our algorithms, we shall solve linear systems
Eq. (1) arising from the combination of the FD and
FETI method applied to finite element approximations
of linear elasticity problems.

5.1. Formulation

Let us consider an elastic body represented by a
bounded domain ω ⊂ R2 with the sufficiently smooth
boundary ∂ω consisting of two disjoint parts γu and γp,
∂ω = γu∪γp (see Fig. 1). Displacements g ∈ (L2(γu))2

are prescribed on γu, while surface tractions of den-
sity p ∈ (L2(γp))

2 act on γp. Finally we suppose that
the body ω is subject to volume forces of density f |ω ,
where f ∈ (L2

loc(R2))2. We seek a displacement field u
in ω satisfying the equilibrium equation in ω and the
Dirichlet and Neumann conditions on the boundary:

−divσ(u) = f in ω,

u = g on γu,

σ(u)ν = p on γp,

 (32)

where σ(u) is the stress tensor in ω corresponding to
u and ν stands for the unit outward normal vector
to γ. The stress tensor σ(u) is related to the linearized
strain tensor ε(u) = 1/2(∇u + ∇>u) by Hooke’s law
for elastic, homogeneous, and isotropic materials:

σ(u) = c1tr(ε(u))I + 2c2ε(u) in ω,

where "tr" denotes the trace of matrices, I ∈ R2×2 is
the identity matrix and c1, c2 > 0 are the Lame con-
stants.

Denote Vg(ω) = {v ∈ (H1(ω))2| v = g on γu}. The
weak formulation of Eq. (32) reads as follows:

Find u ∈ Vg(ω) such that

aω(u,v) = fω(v) + (p,v)γp ∀v ∈ V0(ω),

}
(33)

where

aω(u,v) =

∫
ω

σ(u) : ε(v)dx, fω(v) =

∫
ω

f · v dx,

and (·, ·)γp is the scalar product in (L2(γp))
2.

Ω
Γ

ω
γu

γp

Fig. 1: FD method.
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γuγu

γp

Fig. 2: FD-FETI method.

Let us take a box Ω such that ω ⊂ Ω and construct
a closed curve Γ surrounding ω; see Fig. 1. Instead of
Eq. (33), we propose to solve the following fictitious
domain (FD) formulation of Eq. (32) in Ω:

Find (û,λΓ) ∈ (H1(Ω))2 × (H−1/2(Γ))2 such that

aΩ(û,v) + bΓ(λΓ,v) = fΩ(v) ∀v ∈ (H1(Ω))2,

bγu(µγu , û) = bγu(µγu , g) ∀µγu ∈ (H−1/2(γu))2,

bγp(µγp ,σ(û)ν) = bγp(µγp ,p) ∀µγp ∈ (H1/2(γp))
2,

where bΓ, bγu , bγp are duality pairings between the re-
spective trace spaces and their duals. It is readily seen
that û|ω solves Eq. (33). Notice that λΓ plays the
role of the control variable defined on Γ enforcing the
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boundary conditions on γ to be satisfied. This new re-
formulation of Eq. (33) enables us to use (non-fitted)
uniform meshes on Ω and, in addition, it improves
the convergence rate of finite element approximations;
see [16], [15].

To increase the computational efficiency, we also
apply the FETI method. We decompose Ω into
subboxes Ωi, i = 1, . . . , s such that Ω =

⋃s
i=1 Ωi; see

Fig. 2. To ensure the global continuity of the solution,
we add the "gluing" condition on interfaces of the
subboxes. A common interface between Ωi and Ωj ,
i 6= j, is defined by ∆ij = ∂Ωi ∩ ∂Ωj , |∆ij | > 0.
Before giving the FD-FETI formulation of Eq. (32),
we introduce notation:

V(Ω) =

s∏
i=1

(H1(Ωi))
2

for v = (v1, . . . ,vs) ∈ V(Ω), vi ∈ (H1(Ωi))
2;

ãΩ(v,w) =

s∑
i=1

aΩi(vi,wi), f̃Ω(v) =

s∑
i=1

fΩi(vi)

for v,w ∈ V(Ω);

X(∆) =
∏

∆ij∈∆

(H−1/2(∆ij))
2

with ∆ =
⋃
i 6=j ∆ij ; and

b∆(µ,v) =
∑

∆ij∈∆

b∆ij (µ|∆ij
, [v]ij)

for µ ∈ X(∆), v ∈ V(Ω), where

[v]ij = vi|∆ij − vj|∆ij
denotes the jump of v on ∆ij . The decomposition of
the trace spaces on π ∈ {Γ, γu, γp} is defined as follows:

X(π) =
∏

i:π∩Ωi 6=∅

(Hε(π ∩ Ωi))
2,

where ε = −1/2 for π = Γ, γu and ε = 1/2, if π = γp;
the respective duality pairings are given by

b̃π(µ,v) =
∑

i:π∩Ωi 6=∅

bπ,i(µ|π∩Ωi

,vi)

for µ ∈ X(π), v ∈ V(Ω), where bπ,i are duality pairings
on subspaces and their duals.

The FD-FETI formulation of Eq. (32) reads as
follows:

Find (ũ, λ̃Γ, λ̃∆) ∈ V(Ω)× X(Γ)× X(∆) such that

ãΩ(ũ,v) + b̃Γ(λ̃Γ,v) + b∆(λ̃∆,v) = f̃Ω(v) ∀v ∈ V(Ω),

b̃γu(µγu , ũ) = b̃γu(µγu , g) ∀µγu ∈ X(γu),

b̃γp(µγp ,σ(ũ)ν) = b̃γp(µγp ,p) ∀µγp ∈ X(γp),

b∆(µ∆, ũ) = 0 ∀µ∆ ∈ X(∆).

Note that û satisfies û|Ωi = ũi, i = 1, . . . , s, since the
last equation ensures the zero jump of ũ across all in-
terfaces ∆ij . The mixed finite element approximation
leads to the two-by-two block linear system Eq. (1),
in which A is symmetric, positive semi-definite with
the block diagonal structure, A = diag (A1, . . . , As),
where Ai ∈ Rni×ni , n =

∑s
i=1 ni, and C = 0. The

off-diagonal blocks B1, B2 and g in Eq. (1) are given
by

B1 =

(
BΓ

B∆

)
, B2 =

 Bγu
Bγp
B∆

 , g =

 gγu
gγp
0

 ,

where BΓ ∈ RmΓ×n, B∆ ∈ Rm∆×n, Bγu ∈ Rmγu×n,
Bγp ∈ Rmγp×n, gγu ∈ Rmγu , and gγp ∈ Rmγp with
m := mΓ + m∆ = mγu + mγp + m∆. Here, BΓ

and Bγu are the Dirichlet trace matrices on Γ and
γu, respectively, and Bγp is the Neumann trace ma-
trix (representing the trace of σ(u)ν) on γp. If the
Ladyzhenskaya-Babuska-Brezzi condition [3] is satis-
fied, we get the linear system Eq. (1) with A non-
singular.

5.2. Model Example

Let ω be the interior of the circle:

ω = {(x, y) ∈ R2| (x− 0.5)2 + (y − 0.5)2 < 0.32},

and Ω = (0, 1) × (0, 1). The data in Eq. (32) are cho-
sen as follows: f = −divσ(u), g = u|γu , and p =
σ(u|γp )ν, where u(x, y) = (0.1xy, 0.1xy), (x, y) ∈ R2

and γp is the (northwest) quarter of the circle γ := ∂ω
as in Fig. 2. The decomposition of Ω into Ωi is given
by dividing the sides of Ω into nΩ equidistant segments
of length H so that s = n2

Ω is the total number of the
subboxes. The mesh in each Ωi is constructed analo-
gously: we divide the sides of Ωi into nΩi equidistant
segments of size h so that (nΩi+1)2 is the total number
of the finite element nodes in Ωi. The finite element
discretization of each H1(Ωi) is given by piecewise bi-
linear functions so that n = 2n2

Ω(nΩi + 1)2. Note that
the used meshes are conforming. The auxiliary curve Γ
is constructed by shifting γ three h units in the direc-
tion of the outward normal vector to γ. To define finite
element approximations of X(Γ), X(γu), and X(γp) we
proceed as follows. First we find intersection points
of Γ, γu, and γp with the finite element meshes on
Ωi, i = 1, . . . , s, that define polygonal approximations
of Γ, γu, and γp, respectively, with non-equidistant
straight segments. Then we construct partitions of
these approximations Γ̃, γ̃u, and γ̃p given by polygonal
macrosegments, i.e., unions of few following straight
segments. We assume that Γ̃, γ̃u, and γ̃p contain mΓ,
mγu , and mγp almost equidistant macrosegments for
which mΓ = mγu +mγp . The spaces X(Γ), X(γu), and
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X(γp) are discretized by piecewise constant functions
over Γ̃, γ̃u, and γ̃p, respectively. Next we shall suppose
that hγ/h = log2 h, where hγ denotes the maximal
length of the macrosegments on γ̃ = γ̃ ∪ γp; see [16].
The entries of the matrices BΓ, Bγu , Bγp are given
by: (BΓ)ij = b̃Γ(ξi,φj), i = 1, . . . ,mΓ, j = 1, . . . , n;
(Bγu)ij = b̃γu(ψi,φj), i = 1, . . . ,mγu , j = 1, . . . , n;
(Bγp)ij = b̃γp(ψi+mγu ,σ(φj)ν), i = 1, . . . ,mγp , j =
1, . . . , n; where ξi, ψi, and φj are the basis functions
of the finite element spaces on Γ̃, γ̃ = γ̃u ∪ γ̃p, and Ω,
respectively. As the duality pairings are represented
by integrals over Γ̃, γ̃u, and γ̃p, we evaluate their val-
ues by the composite trapezoidal rule [22]. Since γ
and Γ are not far apart, the satisfaction of Eq. (21) is
guaranteed. The space X(∆) is approximated by the
Dirac distributions defined at the matching nodes on
the common interfaces ∆ij . The discrete "gluing" con-
dition at the matching node xk on Ωi and xl on Ωj
reads as vi(xk) − vj(xl) = 0. Thus each row of B∆

contains only two nonzero entries 1 and −1 in appro-
priate positions.

The model example is computed with h = 4 · 10−3

and H = 2 · 10−1. Fig. 3 and Fig. 4 show the deforma-
tion and the stress field, respectively. The pointwise
errors between the exact and computed solutions are
drawn in Fig. 5 and Fig. 6. One can observe that the
most significant error is concentrated in a vicinity of γ,
especially on the part γp.

Fig. 3: Deformation field.

5.3. Comparison of the Algorithms

We compare the efficiency of the PSCM with re-
spect to different solvers used in the inner level. By
ProjGMRES(P1F ) and ProjGMRES(P1) we denote
our projected GMRES variants with MP = M and
MP = P1, respectively. Note that the former leads
to the equation with the symmetric, positive defi-
nite operator so that the projected CGM may be
also used in this case. We refer to this method as

Fig. 4: Stress field.
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Fig. 5: Pointwise error on γ.
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Fig. 6: Pointwise error in ω

ProjCGM(P1F ). Its implementation was done with
the reorthogonalization of the Lanczos vectors [11].
The projected BiCGSTAB algorithm is denoted here
by ProjBiCGSTAB(P1). It was proposed in [16] start-
ing from the standard BiCGSTAB [26] by analogy with
the projected CGM [8] but only for the Variant 2. Ac-
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tions of generalized inverses of A to vectors are realized
by combining the Cholesky factorization with the sin-
gular value decomposition [4]. The choice of the gen-
eralized inverse has no influnce on convergence of the
projected methods as follows from Theorem 2 (see [20],
[19] for numerical experiments). All computations were
performed by using 32 cores with 2GB memory per core
of the HP Blade system, model BLc7000.

Figure 7 and Fig. 8 show convergence of the relative
residual norm (i.e. err/β in the ProjGMRES) typical
for small and large problems, respectively. Table 1 re-
ports the number of iterations (iter) and the computa-
tional time in seconds (CPU_time). One can observe
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Fig. 7: n = 3528, m = 186.
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Fig. 8: n = 520200, m = 18372.

that ProjGMRES(P1) is the most efficient method, if
a high accuracy of the computed solution is required.
The progress is more expressive in CPU_time, since
the only one action of the generalized inverse of A per
iteration is needed.

Finally, Fig. 9 displays the condition number

κ(P2F
>P1F | N (G2)) =

σmax(P2F
>P1F | N (G2))

σmin(P2F>P1F | N (G2))

for the different number of the subboxes provided that
the ratio H/h is fixed. The obtained results indicate

Tab. 1: Complexity of computations: iter and CPU_time (in
brackets) for two terminating tolerances ε.

subboxes (s) 25 100 225
primal DOFs (n) 130050 520200 1170450
dual DOFs (m) 4148 18372 42692
nullity of A (l) 75 300 675
ε = 10−6

ProjGMRES(P1) 322 633 1001
(34.7) (289.4) (2474.1)

ProjGMRES(P1F ) 289 543 743
(48.5) (396.7) (2164.3)

ProjCGM(P1F ) 378 732 1046
(63.3) (588.4) (4339.8)

ProjBiCGSTAB(P1) 538 628 672
(163.6) (793.3) (1849.8)

ε = 10−9

ProjGMRES(P1) 342 665 1040
(35.9) (327.5) (2817.1)

ProjGMRES(P1F ) 592 1210 1678
(122.6) (1100.4) (7462.2)

ProjCGM(P1F ) 686 1462 2198
(126.8) (1243.0) (9666.7)

ProjBiCGSTAB(P1) >2500 >2500 >2500
∗if >2500, the default maximum of iterations is achieved

the boundedness of κ = κ(P2F
>P1F | N (G2)) that cor-

responds to the scalability of the FETI method [25].
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Fig. 9: Experimental scalability of the FD-FETI method,
H/h = 50.

6. Conclusions

The paper deals with the solution of large non-
symmetric two-by-two block linear systems with a sin-
gular leading submatrix by the PSCM algorithm. This
algorithm extends the ideas used in the FETI domain
decomposition methods. It results from the necessity
to solve the linear equation given by the invertible op-
erator M between two different subspaces V2 and V1

in Rm. We propose the general technique that enables
us to derive from the standard Krylov methods for
non-symmetric matrices their projected analogies ge-
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nerating iterations on V2. Two variants how to choose
the auxiliary operator MP that maps the basis of V2

into V1 are analyzed. The first variant with MP = M
guarantees convergence for each input data. Unfortu-
nately, two expensive actions of M and M> are nec-
essary when multiplying. In addition, the condition
number is too high so that the convergence rate may
be slow. The second variant withMP = P1 uses the or-
thogonal projector P1 onto V1. In this case, the action
of M> is replaced by the action of P1 that is consider-
ably cheaper in computations. However, convergence is
guaranteed only when the angle θ between V2 and V⊥1
is non-zero. Moreover, if θ is small, then the problem
is equivalent to the system of linear equations whose
matrix is close to the singular one.

The second part of the paper is devoted to numer-
ical experiments illustrated by examples arising from
the FD-FETI method. We compare two variants of
the projected GMRES derived in this paper, namely
with the projected CGM (for MP = M) and the pro-
jected BiCGSTAB (for MP = P1). We may conclude
that the GMRES approach with MP = P1 leads to the
best performance of the PSCM algorithm in almost all
experiments, especially, when the high accuracy of the
computed solution is needed.
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