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Abstract. In various fields of numerical mathematics,
there arises the need to compute a generalized inverse
of a symmetric positive semidefinite matrix, for exam-
ple in the solution of contact problems. Systems with
semidefinite matrices can be solved by standard direct
methods for the solution of systems with positive def-
inite matrices adapted to the solution of systems with
only positive semidefinite matrix. One of the possibili-
ties is a modification of Cholesky decomposition using
so called fixing nodes, which is presented in this pa-
per with particular emphasise on proper definition of
fixing nodes. The generalised inverse algorithm con-
sisting in Cholesky decomposition with usage of fixing
nodes is adopted from paper [1]. In [1], authors choose
the fixing nodes using Perron vector of an adjacency
matrix of the graph which is only a sub-optimal choice.
Their choice is discussed in this paper together with
other possible candidates on fixing node. Several nu-
merical experiments including all candidates have been
done. Based on these results, it turns out that using
eigenvectors of Laplacian matrix provides better choice
of fixing node than using Perron vector.
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1. Introduction

The motivation of this paper is a computation of a
generalized inverse of a symmetric positive semidefinite
(SPS) matrix which arises for example in solution of
contact problems. One of the possibilities is a modi-
fication of Cholesky decomposition.

For the purposes of this paper, we will consider the
meshes arising during discretization of numerical prob-

lems from graph theory point of view and we will anal-
yse these meshes as graphs.

The particular purpose of this analysis is to find cer-
tain nodes (further defined as “fixing nodes”) in meshes
to reduce numerical instability in computation of a gen-
eralized inverse of semidefinite stiffness matrix.

Algorithm presented in this paper is taken from [1].
In [1], authors use the Perron vector of an adjacency
matrix for the computation of fixing nodes, which is
only a sub-optimal choice.

In this paper, the proper definition of fixing nodes is
presented. Several candidates to fixing nodes are pro-
vided based on (spectral) graph techniques together
with experimental results. Based on these results, it
turns out that using eigenvectors of Laplacian matrix
provides better choice of fixing node than using Per-
ron vector (eigenvector of the adjacency matrix). The
best choice of fixing node is analysed at the end of this
paper.

2. Generalized Inverse
Algorithm

Let us consider a system of consistent linear equations:

Ax = b, (1)

with an SPS matrix A. In case of FETI method, ma-
trix A is called the stiffness matrix.

If A ∈ Rn×n and b ∈ ImA, where ImA denotes the
range ofA, then a solution x = A+b+Rc of the system
of linear equations Eq. (1) can be expressed by means
of a (left) generalized inverse matrix, A+ ∈ Rn×n, R
is the matrix of rigid body modes, and ~c is a vector of
coefficients.

There are several known algorithms how to compute
generalized inverse matrix. There can be used either
standard direct methods or some of iterative methods
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such as Cholesky decomposition, singular value decom-
position, and their combinations.

In paper Cholesky decomposition with fixing nodes
to stable computation of a generalized inverse of the
stiffness matrix of a floating structure [1], authors
Dostal, Kozubek, Kovar, Markopoulos, and Brzobo-
haty present their algorithm of computation of general-
ized inverse matrix based on Cholesky decomposition,
adapted to the solution of systems with SPS matrix.

Generalized inverse algorithm [1] consists in a de-
composition of the SPS matrix A ∈ Rn×n:

PAPT =

[
ÃJJ ÃJI

ÃIJ ÃII

]
=

=

[
LJJ O
LIJ I

] [
LT
JJ LT

IJ

O S

]
, (2)

where ÃJJ ∈ Rr×r is well-conditioned regular part
of A ∈ Rn×n, LJJ ∈ Rr×r is a lower factor of the
Cholesky factorization of ÃJJ , LIJ ∈ Rs×r, LIJ =
ÃIJL

−T
JJ , S ∈ Rs×s is a singular matrix, s = n − r

is the number of displacements corresponding to the
fixing nodes, and P is a permutation matrix.

Then the generalised inverse A+ is computed as:

A+ = PT

[
L−TJJ −L−TJJ L

T
IJS

†

O S†

]
·

·
[

L−1JJ O
−LIJL

−1
JJ I

]
P, (3)

where S† denotes the Moore–Penrose generalized in-
verse. Permutation matrix P, P = P2P1, is computed
in two steps. First, matrix P1 is found in the form:

P1APT
1 =

[
ÃJJ ÃJI

ÃIJ ÃII

]
, (4)

where ÃJJ is nonsingular and ÃII corresponds to the
degrees of freedom of the M fixing nodes.

Second, reordering algorithm on P1APT
1 is applied

to get a permutation matrix P2 which leaves the part
ÃII without changes and enables the sparse Cholesky
factorization of ÃJJ .

3. Fixing Nodes and
Center-like Points

3.1. Fixing Nodes

Finding fixing nodes effectively and accurately is the
main ingredient of the generalized inverse algorithm.

The active choice is made in sense of permutation
matrix P1 in Eq. (4) such that the rows/columns cor-
responding to those vertices marked as fixing nodes

are permuted at the end of the original stiffness matrix
(bottom-right block). Also, the rigid body motions
corresponding to degrees of freedom of selected fixing
nodes are removed. Let us rewrite the definition of
fixing node (first written in [2]).

Definition 1. Fixing node: Let Ax = b be a system of
linear equations arising from a finite element or finite
difference discretization of the problem, such that A
has one-dimensional kernel (i.e. the singular part ÃII

in Eq. (4) is formed by one zero element).

The one–fixing node is the node that makes the reg-
ular part ÃJJ of the stiffness matrix A produced by
the permutation P nonsingular and well conditioned,
i.e. permutation of this node to the last row/column
of the matrix A makes the condition number of the
regular part ÃJJ finite and sufficiently small.

The best choice of one–fixing node is the node k for
which the regular part ÃJJ of the stiffness matrix A
produced by the permutation P has the minimal con-
dition number over all Ã

k̂k
(Symbol Ã

k̂k
denotes the

principal submatrix arising by removing k-th row and
column from original matrix Ã):

cond(ÃJJ) = min
k={1,...,n}

cond(Ã
k̂k

). (5)

Condition number cond(Ã
k̂k

) is computed as:

cond(Ã
k̂k

) =
λmax(Ã

k̂k
)

λmin(Ã
k̂k

)
, (6)

where λmax(Ã
k̂k

) and λmin(Ã
k̂k

) denote the largest
and the smallest eigenvalue of the non-singular matrix
Ã

k̂k
, respectively. Definition of more fixing nodes is

composed accordingly.

Definition 2. i-fixing nodes: The i-fixing nodes (if the
number i of i-fixing nodes is not important, we use only
the term “fixing nodes” instead of the term “i-fixing
nodes”) are the set of i nodes that make the regular
part ÃJJ of the stiffness matrix A produced by the
permutation P nonsingular and well conditioned, i.e.,
permutation of these nodes to the bottommost rows,
rightmost columns respectively, of the matrix A makes
the condition number of regular part ÃJJ finite and
sufficiently small (see Eq. (4)).

The best choice of i-fixing nodes is the set of i-fixing
nodes for which the regular part ÃJJ of the stiffness
matrix A produced by the permutation P has the min-
imal condition number over all such permutations.

Further, we show techniques how to find one fixing
node. One fixing node can stabilize well the solution
of problems with one-dimensional kernel. Problem of
finding more fixing nodes can be reduced to the prob-
lem of finding one fixing node by decomposition of
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the mesh corresponding to given problem by a suit-
able software into several parts. The fixing nodes are
then found one in each part.

In this case, it is guaranteed that we can obtain the
best choice of one–fixing node in each part in sense of
Definition 1 but the resulting set of i-fixing nodes of
the whole problem do not need to be the best choice of
i-fixing nodes in sense of Definition 2.

Definition 1 operates on condition numbers of resid-
ual matrices, thus it is not suitable to evaluate the fix-
ing node in a reasonable time. Therefore, a fast heuris-
tic has been looked for to provide a good approximation
of the fixing node.

As the fixing nodes should lie near the “center” of
the mesh [3], there are several possibilities how to de-
fine center-like points of mesh, or corresponding graph
respectively.

3.2. Center-like Points

One of the approaches to find an approximation of the
best choice of one–fixing node is based on the mechan-
ical interpretation of the problem. It follows the idea
of choice of the fixing node near the “center” of mesh.
This translates directly into choosing one of the ver-
tices in the center of the graph. Finding graph centers
is not suitable for the numerical solution of large prob-
lems but it provides a good referential point to the
other methods. This approach has been published in
[3].

Another idea how to identify the fixing node is based
on spectral approach, namely on eigenvector of the ad-
jacency matrix of the graph.

Definition 3. Capital vertex : Let the capital vertex
of a graph G be a vertex vi that corresponds to the
index i of the highest value in the Perron vector of the
corresponding adjacency matrix of graph G.

The capital vertex does not identify the center of the
graph, rather a vertex from which most walks of a given
length can be realized. By choosing the capital vertex
to be the fixing node we expect to achieve a stable
numerical solution. Moreover, identifying the capital
vertex is fast.

Authors Dostal, Kozubek, Kovar, Markopoulos, and
Brzobohaty use exactly the Perron vector for fixing
nodes computation in their generalized inverse algo-
rithm [1].

In Fig. 1 overtaken from [1], we can see that the posi-
tion of the fixing node in the rightmost side subdomain
differs from the position where we naturally expect it
should be (i.e. closer to the “center” of given subdo-
main). One can see that the highest value of the Perron

Fig. 1: Mesh with wrong position of fixing nodes.

vector arises at the vertex with the higher degree rather
than in one with the mean value of the degree.

The last presented approach how to obtain a good
approximation of the best choice of one–fixing node
mentioned in this text is based on the eigenvectors of
the Laplacian matrix.

The Laplacian matrix can be set up in dependence on
the boundary conditions. As standard Laplacian ma-
trix corresponds to problem with the Neumann bound-
ary, it is more suitable to represent the problem that
we are interesting in.

According to M. Fiedler theory [4], [5], the eigenvec-
tor corresponding to the second smallest eigenvalue of
the Laplacian matrix is used to graph partitioning [6],
[7]. It is known, that the so-called Fiedler cut defines
the cut in certain coordinate direction. The interesting
thing is that in two-dimensional case, the eigenvector
corresponding to the third smallest eigenvalue defines
the cut in the second coordinate direction. Because the
Fiedler cut is known to be somehow “optimal”, it is rea-
sonable to expect a good approximation of one–fixing
node near the crossing of both cuts.

For purposes of definition of a generalized eigenvec-
tor cut, the notation based on “Fiedler’s tree theorem”
is used, especially notation of the characteristic vertex
and the characteristic edge.

Using the other Fiedler’s results, the Fiedler cut is
formed by the characteristic set (i.e. set of characteris-
tic vertices or characteristic edges). In general, charac-
teristic set can be defined for arbitrary eigenvector of
the Laplacian matrix and for arbitrary type of graph.

Definition 4. k-level cut : Let G = (V,E) be a graph
on n vertices, labelled 1, 2, . . . , n, with Laplacian ma-
trix L(G). Let vk be an eigenvector of L(G) associated
with the k-th eigenvalue (vk[i] denotes i-th element of
vk).

The k-level cut is defined as a characteristic set, i.e.
either set of characteristic vertices or set of character-
istic edges, where:

• characteristic vertices are the vertices i that satisfy
vk[i] = 0,

• characteristic edges are the edges ij such that i
and j are adjacent in G, vk[i] > 0 and vk[j] < 0
(or vk[i] < 0, vk[j] > 0).
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Following this notation, the 2-level cut is exactly the
Fiedler cut. As the spectrum of graph (or meshes re-
spectively), respects the physical properties of given
objects, i.e. the space-dimension, also the cross-
eigenvector center has to be defined with respect to
this characteristic (dimension of the mesh).

Definition 5. Cross-eigenvector center : Let G =
(V,E) be a graph on n vertices:

• For one-dimensional mesh, the cross-eigenvector
center is the vertex, edge respectively, that lies on
the 2-level cut.

• For two-dimensional mesh, the cross-eigenvector
center is the vertex, edge or 2D element respec-
tively, that lies on the crossing of the 2-level cut
and the 3-level cut.

• For three-dimensional mesh, the cross-eigenvector
center is the vertex, edge, face or 3D element re-
spectively, that lies on the crossing of the 2-level
cut, 3-level cut and 4-level cut.

In computational arithmetic, i.e. in presence of
rounding errors, there is usually problem with zero
identification. The cross-eigenvector center is always
assigned to the vertex with the smallest value (in abso-
lute value). The exact position of the cross-eigenvector
center can differ no more than half edge, half element
respectively.

In Section 5. there is presented the sketch of the
proof that the cross-eigenvector center delivers the best
choice of one–fixing node (instead of the other center-
like points), which is its biggest advantage. In opposite
to the capital vertex, the eigenvectors corresponding
to the second, third, and fourth smallest eigenvalue of
the Laplacian matrix are harder to compute than the
eigenvector corresponding to the largest eigenvalue of
the adjacency matrix, which is a disadvantage.

4. Experiments

The results of positioning of fixing nodes based on
listed definitions are presented in this section. The
criterion to measure quality of the approximation of
one–fixing node is the condition number of the regular
part ÃJJ of the matrix A of given problem Eq. (4) af-
ter permutation of the row and column corresponding
to the fixing node at the end of the matrix.

Given examples are quite small (less than 121 ver-
tices and 100 edges) because the finding of the best
choice of one–fixing node according to Definition 1
yields to removing all vertices, computing the condi-
tion number of the regular part of the matrix (i.e. the
largest and the smallest eigenvalue) for each removal,

and choosing the minimal one which is a huge time-
consuming process.

In figures the following symbols appear:

• The best choice of one–fixing node satisfying Def-
inition 1 is drawn as a circle ©.

• The graph centers are drawn as a square �.

• The capital vertex satisfying Definition 3 is drawn
as a triangle4.

• The cross-eigenvector center satisfying Defini-
tion 5 is drawn as a star ∗.

Let us have a look in the rightmost subdomain in
Fig. 2. As the cross-eigenvector center (color cyan) al-
most the same vertex as the best choice of one–fixing
node (color green) has been detected, meanwhile the
capital vertex (color red) has been assigned to the ver-
tex with higher degree which is far from the best choice
of one–fixing node.

Fig. 2: Comparison of two approaches.

Let us briefly present the result of this phenomenon.

At first, let us have a look on the behaviour of center-
like points of the meshes with regular elements, see
Fig. 3(a). In two-dimensional space, the element cor-
responds to the graph face (region bounded by edges).
Our examples consist of quadrilateral type elements
only. As we can see from Fig. 3(a) and from the Tab. 1,
almost all approaches deliver a good approximation of
one–fixing node.

One can suppose that the behaviour of all center-like
points is similar. But this holds only for meshes with
uniform elements, or similarly, for meshes with inner
vertices of the same degree. Let us have a look on the
mesh with mixed elements (quadrilateral and triangle
type) for further testing. This means that the degree
of inner vertices differs from four to six.

For well understanding of the problem, several eigen-
vector of testing meshes are plotted (compare Fig. 3,
Fig. 4). In Fig. 3(b), Fig. 4(b), the eigenvectors of the
adjacency matrix corresponding to the highest eigen-
value are plotted. In Fig. 3(c), Fig. 4(c), the eigen-
vectors of the Laplacian matrix corresponding to the
second smallest eigenvalue are plotted, and in Fig. 3(d),
Fig. 4(d), the eigenvectors of the Laplacian matrix cor-
responding to the third smallest eigenvalue are plotted.

c© 2014 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 126



MATHEMATICAL ANALYSIS AND NUMERICAL MATHEMATICS VOLUME: 12 | NUMBER: 2 | 2014 | JUNE

(a) Example 1 (b) A(G), v1

(c) L(G), u2 (d) L(G), u3

Fig. 3: Example 1 with plotted eigenvectors.

The testing mesh (Example 1) is similar to the Carte-
sian product of two paths P11×P11 and also, the spec-
trum of this mesh is similar to the spectrum of Carte-
sian product P11 × P11. The mesh Example 1 can be
understood as an approximate Cartesian product with
deleted both edges and vertices. The missing left up-
per corner has no essential influence on the behaviour
of the eigenvectors.

Another situation arises if the edges are added in-
stead of deleted (see Fig. 4). The behaviour of the
eigenvector of the adjacency matrix corresponding to
the highest eigenvalue does not correspond to the clas-
sical behaviour of the spectrum of Cartesian products.
Therefore, the capital vertex (based on the adjacency
matrix) do not approximate the best choice of one–
fixing node well.

As we can see in Fig. 4(c), Fig. 4(d), the eigenvectors
of the Laplacian matrix are still indifferent to change
of the structure of the mesh. The cross-eigenvector
center still approximates the best choice of one–fixing
node well.

For better comprehension, Tab. 1 is presented. The
first column represents the name of the test example.
The regular condition number of the matrix A in the
second column is computed by:

cond(A) =
λmax(A)

λmin(A)
, (7)

where λmax(A) and λmin(A) correspond to the largest
and to the smallest non-zero eigenvalue of A. The reg-
ular condition number is used as a reference value, be-
cause it represents the smallest boundary to the con-
dition number of the generalized inverse (the condition
number of the generalized inverse can be never smaller
than the condition number of the original matrix). The
third column represents the condition number of the
matrix ÃJJ considered in Definition 1, i.e. the mini-
mal possible condition number of the regular part ÃJJ

after removing the best choice of one–fixing node. The
condition number of the regular part ÃJJ after remov-
ing the graph center (without definition) is written in
the fourth column.

If more vertices satisfy the definition, the vertex that
causes the minimal condition number has been chosen.
The fifth column represents the condition number of
the matrix ÃJJ when the capital vertex satisfying Def-
inition 3 is removed. The last column represents the
condition number of the matrix ÃJJ when the cross-
eigenvector center satisfying Definition 5 is removed.

We can see that choosing the capital vertex as the
approximation of the best choice of one–fixing node
instead the cross–eigenvector center debases the size of
the condition number from 426.5 (best choice of one–
fixing node, cross-eigenvector center) to 537.1, i.e. by
26 %.
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Tab. 1: Approximation of the best choice of one–fixing node.

No. cond(A) κ(ÃJJ) cond(ÃJJ) cond(ÃJJ) cond(ÃJJ)
(regular) (1-fixing node) (graph center) (Adjacency m.) (Laplace m.)

1 107.7 379.8 379.8 379.8 379.8
2 99.2 426.5 426.5 537.1 426.5

(a) Example 2 (b) A(G), v1

(c) L(G), u2 (d) L(G), u3

Fig. 4: Example 2 with plotted eigenvectors.

5. The Best Choice of
One–Fixing Node

Based on the experiments, it is seemed that the best
approximation of the best choice of one–fixing node is
the cross-eigenvector center. In this section, the par-
ticular theorem is presented.

Theorem 6. The best choice of one–fixing node: The
cross-eigenvector center (according to Definition 5) is
the best choice of one–fixing node (according to Defini-
tion 1).

I.e. if we remove the row and column corresponding
to the cross-eigenvector center from the original ma-
trix A, the remaining principal submatrix has the best
condition number over all principal submatrices.

Remark that we restrict on the matrices with one-
dimensional kernel, i.e. the resulting submatrix has
deleted one row and one corresponding column. In

above definitions, we have worked with some general
stiffness matrix A. As we consider the Laplacian ma-
trix of graph, we will use the symbol L hereinafter.
Symbols with ∼ as L̃, λ̃, etc. will further denote vari-
ables of corresponding reduced problem. If we could
emphasize that the i-th row/column is removed, we
assign the corresponding variables as L̃i, λ̃i, etc.

The condition number is considered in the form:

cond(L̃) =
λ̃max(L̃)

λ̃min(L̃)
. (8)

From one of the variant of Cauchy-like interlacing
theorems (see i.e. [8]), removing the fixing node does
not change the λ̃max so much as the λ̃min. Therefore,
the minimization of the condition number corresponds
to the maximization of the λ̃min. Theorem 6 can be
paraphrased into following form:

Theorem 7. Maximization of λ̃min: Removing the
vertex k corresponding to the cross-eigenvector center
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in Laplacian matrix L, the maximal value of λ̃?min of
L̃ is obtained over all λ̃imin of all principal submatrices
L̃i, i.e., the condition number L̃i is minimized over all
i.

Finding the maximal value of λ̃?min can be written:

λ̃?min = max
i={1,2,...,n}

λ̃imin. (9)

As the whole proof of this theorem consists in com-
prehensive analysis of all cases, we restrict on the main
ideas only. The complete proof can be found in [2].

Proof. In our considerations, we come out from the
Rayleigh’s principle [9]. The smallest eigenvalue of the
reduced matrix L̃ can be computed as:

0 6= λ̃min = min
xT L̃x

xTx
= min
‖x‖=1

xT L̃x. (10)

As we would like to find which vertex i from the orig-
inal matrix L should be removed to obtain the maximal
value of λ̃min, we have to rewrite the above equation
using original matrix L. Remark that the removing of
the vertex i in original matrix L corresponds to set-
ting the corresponding component of vector x to zero,
which can be written as:

λ̃imin = min ‖x‖=1
xi=0

xTLx =

= min ‖x‖=1

xi=0∼xT ei=0∼eT
i

x=0

xTQΛQTx. (11)

In the last equation, we have substitute the Lapla-
cian matrix by its spectral decomposition, where Λ is
a diagonal matrix of eigenvalues of L ordered in as-
cending order and Q is the matrix, whose columns are
eigenvectors of L ordered accordingly.

After some manipulations (and substituting y =
QTx, yT = xTQ respectively) we get:

λ̃imin = min ‖y‖=1
ri(Q)y=0

yT Λy =

= min ‖y‖=1
ri(Q)y=0

∑n
i=1 λi, (12)

where ri(Q) denotes the i-th row of matrix Q (and it
is not the eigenvector).

For given n we solve following system of equations:

λ̃imin = min
(
λ1y

2
1 + λ2y

2
2 + · · ·+ λny

2
n

)
, (13)

subject to:

y21 + y22 + · · ·+ y2n = 1, (14)
qi1y1 + qi2y2 + · · ·+ qinyn = 0. (15)

Here, qij denotes the ij-th entry of matrix Q, i.e. qi?
denotes again the i-th row of matrix Q.

Thanks to Cauchy Interlacing Theorem [8]:

0 = λ1=min ≤ λ̃1=min ≤ λ2 ≤ . . . ≤ λ̃n−1 ≤ λn, (16)

we get the upper bound for λ̃imin ≤ λ2.

Considering the particular example of regular rect-
angle mesh with known eigenvalues and eigenvectors, it
can be shown, that we obtain exactly the upper bound
for i such that qi2 = 0, [2]:

λ̃imin = min
(
λ1y

2
1 + λ2y

2
2 + · · ·+ λny

2
n

)
= λ2. (17)

Notice that in this notation, the qi2 corresponds to
the i-th entry of the second smallest eigenvector of the
Laplacian matrix which corresponds exactly to 2-level
cut according to Definition 4.

6. Conclusion

In this paper, we have presented a modification in sta-
bilization of generalised inverse algorithm used in [1].
Our modification consists in another choice of fixing
node.

Several numerical experiments have be done to ob-
serve the influence of different choice of fixing nodes
on the condition number of resulting matrix. Based on
these experiments, it has been shown that using eigen-
vectors of the Laplacian matrix provides better choice
of fixing node than using eigenvector of the adjacency
matrix (used in [1]).

We have presented the main ideas of the analytical
proof that the capital vertex (defined using eigenvec-
tors of the Laplacian matrix) provides the best choice
of one-fixing node. The whole proof is based on knowl-
edge of eigenvalues and eigenvectors of the particular
example of regular rectangle mesh and it can be found
in [2].
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